Hydro Power

Electricity extracted through water

Hydro Power

Hydroelectricity is the application of hydropower to generate electricity. It is the primary use of hydropower today. Hydroelectric power plants can include a reservoir (generally created by a dam) to exploit the energy of falling water, or can use the kinetic energy of water as in run-of-the-river hydroelectricity. Hydroelectric plants can vary in size from small community sized plants (micro hydro) to very large plants supplying power to a whole country. As of 2019, the five largest power stations in the world are conventional hydroelectric power stations with dams.

If we do not learn to eliminate waste and to be more productive and more efficient in the ways we use energy, then we will fall short of this goal [for the Nation to derive 20 percent of all the energy we use from the Sun, by 2000]. But if we use our technological imagination, if we can work together to harness the light of the Sun, the power of the wind, and the strength of rushing streams, then we will succeed.

Hydro Mechanism

The theory is to build a dam on a large river that has a large drop in elevation (there are not many hydroelectric plants in Kansas or Florida). The dam stores lots of water behind it in the reservoir. Near the bottom of the dam wall there is the water intake. Gravity causes it to fall through the penstock inside the dam. At the end of the penstock there is a turbine propellor, which is turned by the moving water. The shaft from the turbine goes up into the generator, which produces the power. Power lines are connected to the generator that carry electricity to your home and mine. The water continues past the propellor through the tailrace into the river past the dam. By the way, it is not a good idea to be playing in the water right below a dam when water is released!

Reservoir

Hydropower is produced in 150 countries, with the Asia-Pacific region generating 33 percent of global hydropower in 2013. China is the largest hydroelectricity producer, with 920 TWh of production in 2013, representing 16.9% of domestic electricity use. The cost of hydroelectricity is relatively low, making it a competitive source of renewable electricity. The hydro station consumes no water, unlike coal or gas plants. The typical cost of electricity from a hydro station larger than 10 megawatts is 3 to 5 US cents per kilowatt hour.[2] With a dam and reservoir it is also a flexible source of electricity, since the amount produced by the station can be varied up or down very rapidly (as little as a few seconds) to adapt to changing energy demands. Once a hydroelectric complex is constructed, the project produces no direct waste, and it generally has a considerably lower output level of greenhouse gases than photovoltaic power plants and certainly fossil fuel powered energy plants (see also Life-cycle greenhouse-gas emissions of energy sources).

Quick Connect

Need to get in touch with the team? We’re all ears, you just have to share your email.

Scroll to Top